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Comment on ‘‘p kinks in strongly ac driven sine-Gordon systems’’
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V. Zharnitsky, I. Mitkov, and N. Gronbech-Jensen@Phys. Rev. E58, 1, R52~1998!# found thatp kinks can
propagate in strongly perturbed, directly driven rescaled sine-Gordon system provided that the parameters are
chosen to make 2p kink localization vanish. In this paper we would like to note that besidep and 2p kinks
there can exist other kinklike solutions due to the fact that two unstable equilibria in the sine-Gordon phase
emerging at a critical value of the drive amplitude are not necessarily separated byp, to the contrary with the
result of Zharnitsky, Mitkov, and Gronbech-Jensen. As a result, for the nondissipative system two one-
parameter families of kink solutions exist that in the degenerate case become a one-parameter family ofp-kink
solutions obtained in Zharnitsky, Mitkov, and Gronbech-Jensen. In the dissipative case velocity is selected for
each of the two families of kink solutions by the balance between perturbations.
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In a recent paper Zharnitskyet al. @1# found for nondissi-
pative ac driven sine-Gordon equation~SGE! a one-
parameter family ofp kinks moving with any prescribed
velocity. In the case of damped and driven SGE it w
shown that velocity is selected and only one of thep kinks
survives. The purpose of this Comment is to show that ot
kinklike solutions can be easily obtained using the eleg
techniques of Zharnitskyet al., if one eliminates small inac
curacies in@1#.

Following @1#, consider firstly the equation of motion fo
a directly forced pendulumf̈1sinf5Mf(vt), wheref is a
mean-zero periodic function,M is a constant,t represents a
normalized time, andv@1. After applying the transforma
tion f5u1Mv22F(vt) @whereF9(t)5 f (t)], one obtains
the equation

ü1sin@u1Mv22F~vt !#50 ~1!

with the corresponding HamiltonianH(p,u). Invoking series
of canonical transformations described in@1#, one finally gets
the HamiltonianH15H̃(P,Q)1O(v23), where

H̃~P,Q!5
P2

2
2C cos~Q2g!2

v22

2
D cos~2Q2d!,

~2!

here P and Q are new canonical variables an
C, D, g, d are constants depending on perturbat
M f (vt) @1#. The simple but important question is the ex
tence and location of equilibria of the system@Eq. ~2!#.

In @1#, it is said that forC5” 0 there is only one stable
equilibrium Q5g and one unstable equilibriumQ5p1g,
for large frequencies; asC passes through 0, a bifurcatio
occurs and~for C50) the system has two stable equlibr
given by Q5d/2, p1d/2 and two unstable equilibria
given by Q5p/21d/2, 3p/21d/2. This is slightly inac-
curate. Althouth it is true that for anyC5” 0 there are fre-
quencies large enough for the system to have only one
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stable and one stable equilibrium, it is obvious that for a
frequency, we can findC5” 0 such that the system woul
have two stable and two unstable equilibria. This is the k
point that leads to the existence of new kink solutions in
forced SGE. Denotek5Cv2/2D and letD.0. One can see
that in case 2g5d2p andk,1 there are two stable equ
libria given byQa,b5g1arccosk,g2arccosk and two un-
stable equlibria given byQc,d5g,p1g. The distance be-
tween two stable equlibria is equal tob52 arccosk and
becomes equal top for C50. It is important that these
equlibria are on the same level of the Hamiltonia
i.e., H̃(0,Qa)5H̃(0,Qb). We are interested in the stab
equlibria of H̃(P,Q) because in the consideration of th
forced SGE the HamiltonianĤ(P,Q)5P2/21C cos(Q2g)
1(v22/2)D cos(2Q2d) will arise. The HamiltonianĤ(P,Q)
has the unstable equilibria coincident with the stable equi
ria of H̃(P,Q) ~see Fig. 1!. From now on, we assume tha
2g5d2p ~we will show below that this condition is auto
matically fulfilled when the perturbation is sinusoidal!.

Solving the equations of motion corresponding to Ham
tonian Ĥ(P,Q), one can get the following separatrix solu
tions:

Q1~ t !5g12 arctanFA12k

11k
tanhSAD~12k2!

2v2
t D G ,

~3!

Q2~ t !5g1p12 arctanFA11k

12k
tanhSAD~12k2!

2v2
t D G ,

whereQ1(t) is the separatrix solution with the initial cond
tion Q1(0)5g, and Q2(t) is the separatrix solution with
Q2(0)5p1g.

Consider now the damped and driven SGE:

f tt2fxx1sinf5M f ~vt !2af t1h. ~4!

Following @1#, introduce a new phaseu5f2G(t), where
G̈1aĠ5M f (vt). The new equations of motions are
©2001 The American Physical Society01-1



-

-

e
ts

a
ns

pa-
tion
k

ac
in

ce
th
y

for

COMMENTS PHYSICAL REVIEW E 63 028601
u t5p, pt5uxx2ap1h2sin@u1G~vt !#. ~5!

Applying a series of transformations described in@1# to Eq.
~5! and neglecting terms;v23 one gets the following sys
tem of equations@compare with Eq.~16! of @1##:

Q t5P,
~6!

Pt5Qxx2aP1h2C sin~Q2g!1
D

v2
sin~2Q22g!.

Let us substitute a traveling wave ansatz,Z5x2ct in Eq.
~6!. In the zeroth order ina and h, we get the equationQ̈
5sin(Q2g)2v22D sin(2Q22g), where overdots denote dif
ferentiating over new timeZ/A12c2. The Hamiltonian of
the latter equation isĤ(P,Q) and its separatrix solutions ar
Q1,2(Z/A12c2). These solutions are kinks whose heigh
@i.e., Q(1`)2Q(2`)] are equal tob and 2p2b, respec-
tively. In the degenerate caseb52 arccosk5p these two
one-parameter families of kink solutions give usp kinks
obtained in@1# „note that arctan@tanh(x/2)#[arctan@exp(x)#
2p/4…. Whena5” 0 andh5” 0, only two of these solutions
are selected out because of the energy balance consider
@1#. Each of the one-parameter families of kink solutio
Q1(Z/A12c2) andQ2(Z/A12c2) gives one solution, with
the velocitiesc1 andc2 correspondingly, where

c1,25
2h

a

E
2`

1`

Q1,28 dZ

E
2`

1`

~Q1,28 !2 dZ

52
s1,2hv

A8a2D1h2v2s1,2
2

. ~7!

FIG. 1. The effective potential Ĥ(0,Q)5C cos(u2g)
1(v22/2)D cos(2Q2d) in the case 2g5d2p and k5Cv2/2D
,1.
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tion

Here we denoted

s1,25

4 arctanA17k

16k

A12k272k arctanA17k

16k

. ~8!

Returning back to the variables (u,p) we finally get two
approximate kink solutions „u1(x,t),p1(x,t)… and
„u2(x,t),p2(x,t)…:

u1,25V1,21Dh ,
~9!

p1,25
]

]t
V1,22

$A%21

v
sin~V1,2!2

$B%21

v
cos~V1,2!,

whereV1,2(x,t)5Q1,2(@x2ct#/A12c2), $A%21 and $B%21
are defined in@1#, Dh5v2h/2D(12k2) is a small correc-
tion that compensates the constant perturbationh far from
the center of the kink. Thus, in the dissipative case the
rameters of the system should satisfy the additional condi
uDhu!1 in order for Eq.~9! to be the good approximate kin
solution.

In the particular case of sinusoidal perturbationf (t)
5sin(t) one can find, using Eq.~9! of @1#,

C5J0~G!, D52 (
n51

`
Jn~G!J2n~G!

n2
,

~10!
g50, d5p,

whereG52M /vAa21v2 ~see also@2#!. Note that the con-
dition 2g5d2p is automatically fulfilled. Using Eq.~10!,
one can vary the parameterb from 0 to 2p.

To conclude, we have shown that directly strongly
driven SGE can produce two branches of kink solutions
the region of parameter space where 2p-kink localization
vanishes. These two branches of kink solutions areb- and
(2p2b)-kinks. It means that the region of parameter spa
where 2p-kink localization vanishes does not coincide wi
the regions wherep-kink localization exists, to the contrar
with @1#.

The author wishes to thank Professor A. I. Neishtadt
useful discussions.
h-
@1# V. Zharnitsky, I. Mitkov, and N. Gronbech-Jensen, Phys. R
E 58 ~1!, R52 ~1998!.
. @2# K. O. Rasmussen, V. Zharnitsky, I. Mitkov, and N. Gronbec
Jensen, Phys. Rev. B59, 58 ~1999!.
1-2


